Proliferation and differentiation potential of pluripotent mesenchymal precursor C2C12 cells on resin-based restorative materials.
نویسندگان
چکیده
This study investigated the proliferation and differentiation potential of pluripotent mesenchymal cells on three resin-based restoratives using a typical pluripotent mesenchymal precursor cell line, C2C12. C2C12 cells were cultured for 3-21 days on cured specimens of a Bis-GMA/TEGDMA-based composite resin (APX; Clearfil AP-X), a 4-META/MMA-based resin cement (SB; Superbond C&B) or a HEMA-containing resin modified glass-ionomer (LC; Fuji Ionomer Type II LC). To examine the influences on differentiation potential, alkaline phosphatase (ALP) activity of the cells cultured on each material was determined. On APX and SB, cells adhered and proliferated well, and no significant influences on ALP activity were observed. In contrast, poor cell proliferation and significant suppression of ALP activity were observed for cells cultured on LC, similar to those cultured on a zinc oxide EBA cement used as a control material. Bis-GMA/TEGDMA-based composite resin and 4-META/MMA-based resin exhibited better biocompatibility for C2C12 cells than HEMA-containing resin modified glass-ionomer, suggesting a potential advantage of the former two resins to show smaller influences on regeneration of periapical or periodontal tissue.
منابع مشابه
Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملThe effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells
Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...
متن کاملCo-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds
Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...
متن کاملMesenchymal Stem Cells: History, Isolation and Biology
Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...
متن کاملDifferentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dental materials journal
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2010